Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15.

نویسندگان

  • J A Benson
  • I B Levitan
چکیده

Previous work has shown that serotonin causes an increase in K+ conductance in the identified Aplysia neuron R15. This response is mediated by cAMP-dependent protein phosphorylation. The results presented here show that the K+ channel modulated by serotonin is an anomalous or inward rectifier (designated IR) that is present in R15 together with the three other distinct K+ channels previously described for this cell. Several lines of evidence indicate that this inward rectifier is partially activated in the resting cell and is further activated by serotonin. Voltage clamp analysis of resting and serotonin-evoked membrane currents at various external K+ concentrations shows that both currents have reversal potentials close to the potassium equilibrium potential, exhibit similar dependences in magnitude on external K+ concentration, and display marked anomalous rectification. The effects of particular monovalent and divalent cations are also similar on the resting and serotonin-evoked currents. Rb+, Cs+, and Ba2+ block both currents while Tl+ can substitute for K+ as a charge carrier and channel activator in both. These properties are characteristics of anomalous rectifiers in other systems. Furthermore, measurement of the voltage dependence of inactivation for the fast transient K+ current shows that this current cannot account for the anomalously rectifying K+ conductance in R15. The inward rectifier is therefore a separate current mediated by its own channels, the activity of which can be modulated by serotonin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmentation of bursting pacemaker activity by egg-laying hormone in Aplysia neuron R15 is mediated by a cyclic AMP-dependent increase in Ca2+ and K+ currents.

Release of the neuropeptide egg-laying hormone (ELH) from Aplysia bag cell neurons augments the endogenous bursting pacemaker activity of neuron R15. We have studied the ionic mechanisms underlying the effect of ELH in voltage-clamped R15 neurons. Both electrical discharge of the bag cells, which releases endogenous ELH, and application of synthetic ELH on cell R15 result in an increase in two ...

متن کامل

Mechanism of calcium-dependent inactivation of a potassium current in Aplysia neuron R15: interaction between calcium and cyclic AMP.

In the preceding paper (Kramer and Levitan, 1988), we presented evidence that an inwardly rectifying K+ current (IR) is inactivated by Ca2+ influx accompanying spontaneous bursting activity in the Aplysia neuron R15. In this paper we examine the mechanism that enables Ca2+ to inactivate IR. Since IR is enhanced by cyclic AMP in neuron R15 (Drummond et al., 1980; Benson and Levitan, 1983), we ex...

متن کامل

Fine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell.

The identified neurone R15 in the abdominal ganglion of the marine mollusc, Aplysia californica, exhibits a rhythmic bursting pattern of electrical activity. This pattern, which is generated endogenously by the interaction of several voltage- and time-dependent ion currents in R15's membrane, is subject to long-term modulation by synaptic stimulation and application of several neurotransmitters...

متن کامل

Serotonin acting via cyclic AMP enhances both the hyperpolarizing and depolarizing phases of bursting pacemaker activity in the Aplysia neuron R15.

Bath application of 5-HT, at concentrations below 10 microM, enhances the amplitude of the interburst hyperpolarization in the Aplysia bursting pacemaker neuron R15. It is known that 5-HT acts via cyclic AMP to produce this effect by increasing the inwardly rectifying potassium current (IR). Here, we report that further elevating the concentration of 5-HT produces an enhancement of the depolari...

متن کامل

Intracellular Injection of Guanyl Nucleotides Alters the Serotonin- induced Increase in Potassium Conductance in Aplysia Neuron

The effects of the adenylate cyclase inhibitor GDPßS on the response of Aplysia neuron R15 to serotonin (51-IT) were investigated. Previous studies have demonstrated that 5HT causes an increase in K+ conductance in R15 and that the response is mediated by cAMP. At concentrations in the micromolar range, GDPßS inhibits the stimulation ofadenylate cyclase by 5HT in particulate fractions from Aply...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 80 11  شماره 

صفحات  -

تاریخ انتشار 1983